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Abstract. Hamiltonians built of SU3 generators are presented which allow for qualitatively
different classical limits. The generators of the grdifz give eight independent observables.

In the classical limit two invariant functions of these observables, the so-called Casimir functions
c2 andcs, take fixed values in the rangds< ¢, < § and—2 < c3 < 2 (anSU, system, in
contrast, has just one such Casimir function, the squared total angular momentum). Generically,
this leads to a six-dimensional phase space. However, for two special (‘degenerate’) pairs of values
c2=3%,c3=—2andc; = , c3 = § the classical dynamics is only four-dimensional. One and

the same Hamilton function of the generators may be integrable in the four-dimensional phase space
but generate chaos in the six-dimensional case. We give two examples of Hamiltonians for which
that alternative does arise; one of these is closely related to the Lipkin Hamiltonian familiar from
nuclear shell models. The transition from integrable to chaotic classical behaviour is accompanied
by the usual guantum transition from level clustering to level repulsion.

1. Introduction

There is a well established connection between the statistical properties of spectra of quantum
systems with their classical counterparts. Generic classically nonintegrable systems are, on the
quantum level, characterized by level repulsion, as well described by random-matrix theory.
Classical integrability for two or more degrees of freedom, on the other hand, tends to go with
level clustering [1-3].

In this paper we investigate a special class of systems which on the classical level have a
compact phase space and, as a quantum mechanical consequence, a finite-dimensional Hilbert
space. The classical limit is approached by increasing the dimension of the Hilbert space.

The simplest example of this kind is given by the dynamics of an angular momentum
or spin. Due to the formal equivalence between a s%pismd a two-level atom, collective
dynamics of any humber of identical two-level atoms can be described in terms of an angular
momentum. Quantum signatures of chaos have been investigated in such systems for a long
time (the kicked top [3]). When the number of atoms grows, the associated spin dynamics
approaches a well defined classical limit. As is well known, the classical phase space of an
angular momentum is two-dimensional (the surface of a sphere), corresponding to a single
degree of freedom. To allow for chaos, periodic driving must be allowed for, as is indeed the
case for the kicked top. Autonomous chaotic dynamics would require at least two coupled
angular momenta [4, 5].

The basic symmetry for a three-level atom [6]9&/3. In that case the algebra of
observables is spanned by eight quantities, the generators of the Lie §figuhe Hilbert
space of the quantum system is again finite-dimensional. In fact, if several identical three-
level atoms are to be described, the Hilbert space dimension depends on the representation
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144 S Gnutzmann et al

of SUs relevant for the actual configuration of the system. Irreducible representations of
SUs3 are indexed by two independent quantum numbers (in contrast to the case of the angular
momentum where a single quantum number, the total gpnffices to uniquely characterize

the representation). There are thus many different ways of increasing the Hilbert space
dimension towards a classical limit. We shall show that even the dimension of the classical
phase space depends on the method of selection: the classical dynamics can involve either two
or three degrees of freedom.

An interesting alternative could thus arise for autonomous dynamics with a Hamiltonian
operator built bySUs generators. Such a given Hamiltonian could yield integrable classical
dynamics in the four-dimensional phase space and chaotic motion in six dimensions. As
the quantum analogue of that alternative one might expect, for one and the same quantum
Hamiltonian operator, level clustering and level repulsion, depending on the representation
chosen.

We shall, indeed, present two examples of Hamiltonians which do have very different
spectral statistics in different irreducible representations. Level clustering is observed for
irreducible representations that lie on the path to integrable classical dynamics and level
repulsion sets in which the irreducible representation lies on the path to non-integrable
dynamics.

Even though we have not selected our example Hamiltonians according to easy
experimental realizability, it is clear that switching between qualitatively different dynamics
in a givenSUs system should be observable. At any rate, one of our example Hamiltonians
is familiar from nuclear shell models [7—10]. Realizations in super-radiant lasers with many
collectively pumped and radiating three-level atoms [11] are also imaginablef.

2. Quantum mechanics of a large number of three-level atoms with collective interaction

2.1. Quantum mechanical description of a single three-level atom

The Hilbert space of a single three-level atom is spanned by the orthonormal vectors

1 0 0
1) = (O) |2) = (l) 13) = (O) . (2.1)
0 0 1

They are connected by the nine linear operators
7ij = 1) (/I i,j=123. (2.2)

The operator;; describes a transition from the staf¢ to the statgi), and its expectation
value has the meaning of a complex polarization or coherendge#of, and of an occupation
probability in the diagonal case= j. We incur the commutation relationst

[Tij, T] = SkjTur — BirTuj- (2.3)

The canonical group of basis transformation$lis, i.e. the group of unitary 8 3 matrices
with unit determinant (an overall phase shift of basis vectors has been excluded here as it leaves
all physical properties of basis vectors unchanged).

Any product of the operators; can be expanded in a linear combination using

Tij T = 10) (k) (1] = 8k Tir- (2.4)

t Though not closely related to our work, we would like to draw attention to a paper on inter- and intra-shell chaos
in the hydrogen atom [12], where the relevant Hilbert spaces (the hydrogen shells) have finite dimension.

1 These are the commutator relations of the Lie algegitéC) (restricted to Hermitian generators it gives the Lie
algebraus).
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Whatever Hamiltoniarf may be at work, the Heisenberg equation

d [
E‘[,‘j = ﬁ[H’ fij] (25)

is thus linear in the operatotg and can be easily integrated.

2.2. Many three-level atoms with collective interaction

For N identical but distinguishable three-level atoms (to be referred to simply as three-level
atoms hereafter) the atomic state is a vector inNkhiold tensor product of the Hilbert space
of a single atom. We then incur collective coherences and occupation numbers of the atoms,

N

S,'j = ZT;]‘I)' (26)

=1

Hereri(j?) acts asg; in the Hilbert space of thah atom (and as unity in the Hilbert spaces of
all other atoms). The operatafs obey the same commutator relations (2.3) asrifie The
diagonal operators;; fulfil

S11+ 822+ 833 =N. (2.7)

We may, therefore, restrict our attention to operators depending only on differences of the
diagonal generators. In common usage in particle physics are the combinations

Ts = 5(S11— S22)

2.8
Y i= 5(S11+ S22 — 2533) 8

usually referred to as the third components of isospin and hypercharge; we shall adhere to this
notation although its physical significance, in our case, amounts to no more than a difference
in occupation numbers. At any rate, the isospin and hypercharge variables together with the
six coherences;;, withi # j, span the Lie algebra of the grodi/s.

We shall consider quantum mechanical systems built up by a fixed large nunbgr
three-level atoms with a Hamiltonian depending only on the collective operap¥sand

Sii (@ # J):
H=H(T3,Y,S;j) i#j H=H" (2.9)

Interesting phenomena occur if we allow for Hamiltonians nonlinear in the generators, such
as

3
Hipiin = a(S11— Ss) +b > 7 (2.10)
i.j=Li#j

which is known as the Lipkin Hamiltonian used in nuclear shell models [7—10]. Such Hamilton
operators can also arise for three-level atoms collectively coupled to eigenmodes of the
electromagnetic field in a cavity. They are block diagonal and each block is connected to
an irreducible representation of the Lie grafig;. From now on we shall always assume that
the Hamilton matrix has been reduced to one of these irreducible blocks.

T Thes;; span a representation of the Lie algebtaC).
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2.3. IrreducibleSUs representations

In this section we recall the mostimportant facts on irreducible representations of the Lie group
SUs. Readers familiar with basic representation theory should skip this section.

We start with some words o6iU; and its generators, angular momenta. The familiar
irreducible representations are labelled by the one-integer or half-integer nymbAas
generators we may take three linear operators (matriGes)., J; in a(2;j + 1)-dimensional
Hilbert space with the well known angular momentum commutator relations

[J‘H J—] = 2‘]3 [J37 Ji] = ‘]ﬂ:' (211)
A basis of the Hilbert space is provided by the eigenstates:of
J3|lm; j) = m|m; j) m=—j,—j+1...,j—1,j (2.12)

and the numbey is related to the squared total angular momentum opevater Jz(Jz+1) +
J_J., which is a constant in an irreducible representatidr= j (j + 1)I. The numbey also
characterizes an irreducible representation as being the highest eigenv&ue of

Jalj)j = jlis J)- (2.13)

The corresponding eigenvectgt, j) is usually called the highest-weight vector.

Just as forSUs,, any irreducible representation 61/3 is uniquely characterized by its
highest-weight vectofu). This highest-weight vector is unique up to a phase factor and
defined as a common eigenstatefgfindY with eigenvalues

A1
T3lpn) = 7|M>
A1+ 20 (2.14)
Yip) = TIM)
and it is annihilated by raising operators,
S12lpu) = Saslpn) = S13lu) = 0. (2.15)

The non-negative integers, A, = 0,1, 2,... are used as labels for the irreduciti&’s
representations, just as the quantum numhsused to label irreducibl&U; representations.
We shall denote the representation characterizexd, landa, as f.1; A2].

In any representation.f; A,] with eitheri; = 0 or A, = 0, the two operatorgz and
Y build a complete set of commuting observables, i.e. there is a basis of eigenvectors such
that the eigenvalues @ andY are not degenerate. In a general representatign.p] with
A1 # 0 andi, # 0 such a basis is degenerate and the smallest complete set of commuting
observables consists of the three operafary” and7? = T5(Tz + 1) + S»151» (we shall call
T? the total squared isospin).

The alternative just described for the number of operators in the smallest complete set
of commuting observables will turn out to correspond to an alternative for the dimensionality
of the phase space in the classical limit. Every operator in this commuting set gives one
classical freedom. The classical limitthus yields a four-dimensional phase space for irreducible
representations with one of the vanishing, while six dimensions arise if neither of the
vanishes.

The construction of bases as well as matrices representing the opérateas pioneered
by Gelfand and Zetlin fosU,, andS 0, [13], see also [14, 15].

In the SU, case an irreducible representation is uniquely identified by the value of
the squared angular momentufi, an operator commuting with all generators. A similar
characterization of irreducible representations can be mad#.farTo this end we need two
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independent operators commuting with &l/'s generators, the so-called Casimir operators.
In terms of the generatot$;, these read

3
Co= Y S8;Sji (2.16)
i,j=1
3
C3= Z Sij Sk Ski- (2.17)
i k=1

Inthe Hilbert space of an irreducible representation j,] they act as multiples of the identity
operator

Cz = Cl()»l, )»2)]1 C3 = b()»]_, )»z)H. (218)

The constanta andb uniquely determine (and are uniquely determined by) the valugsg of
ando:

a(hy, h2) = Z(A% +Aho + A5+ 301 + 31 (2.19)
b(A1. h2) = 3(223 — 223+ 309a2 — 31143 + 1802 + Ohghp + 36y + 1817) (2.20)
and, therefore, also provide a unique characterization of each irreducible representation.

3. Classical limit

3.1. Construction of the classical limit vi$l/3; coherent states

To perform the classical limit we must specify quantitigscorresponding to the quantum
generatorss;;, calculate their Poisson brackets, characterize the phase space, and, finally,
concretize the technically empty = 0’ to a meaningful limit for controllable parameters.

In particular, a quantum dynamics generated by a Hamiltonian of the form

3 3
Hr 2 T
H= Z al(ll)ghslllz + Z al(ll)213l4h2S1112S13l4 e (3-1)
1

I1,lb= I1,012,13,14=1

with coefficientsa® independent ok will then yield a classical dynamics generated by an
associated Hamiltion functioff with thes;; as independent variables.

In the case ofSU,, the dimension 2 + 1 of irreducible representations can be taken
as a controllable representative ofil The classical limit arises by sending the dimension
to infinity. It is natural to proceed analogously f8/3. However, since the dimension
of an irreducible representation here depends on the two integer parametand 1, as
d = WDlerDatiat? there are many possibilities of approaching the classical limit via
different irreducible representations with increasing dimensions. We shall eventually be led
to choosing the representative/ofisi = (A1 + Ap) L.

In an earlier paper [16] two of us constructed the classical limit and the classical phase
space using Us coherent states. Referring the reader to [16] for details here we repeat only
what is needed for our further considerations.

Non-normalized coherent states are found for each non-degenerate, (# 0)
irreducible representation.{; A,] by acting on the highest weight vectr) (2.15), (2.14)
with all elements of the group of lower-triangular complex matrices as [17, 18]

lly) = b)) (3.2)
b(y) = exp(ysSa1) €XP(y1521) €XP(y2532) (3.3)
with the shorthand notatiop = (y1, y», y3) € C3.
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To normalize the states we calculate the norm

wlly) = £ f5° (34)
obtain

fi=1+nP +ysl (3.5)

fo=1+Ipl +lys — nyal? (3.6)
and define the normalized coherent states by

vy = £ 57 y). (3.7)

The coherent states make ug&s-invariant submanifold of Hilbert space, i.e.

gly) =9y (y, )  for g=exp<iZak,Sk,)eSU3. (3.8)

The coherent states build a manifold with real dimension six Xfot., # 0) or four (for
A1 = 0 orip; = 0) [16]. In the classical limit the submanifold will become, by appropriate
rescaling, the classical phase space. Turning to the six-dimensional case first, we now proceed
to defining observables and Poisson brackets on the manifold of coherent states.

As classical observables; we take the expectation values of the generafyrswith
respect to coherent states. Straightforward calculations give

_ A1 .
532 = h{y|Sa2ly) =h—yiyz3 +h—y,
f f2
- T N
s31=h{y|Saily) =h—y3 +th—(y3 —¥1v2)
f f2
- T o wk
s21=h{y|Saaly) =h—vy{ —h—vy2(y3 —viV2)
f f2
_ Y A
s2a=T{y|Saaly) = == yiys + R =2 ys
f1 f2
_ M A
s13=h(y|S13ly) =h—y3+h—(y3 — y1y2) (3.9
f f2
_ A A
s12 = R(y|S1aly) = Az yy — h—zyz*()@ — Y1Y2)
N f2
3= (511 522) = Ry Taly) = F22 (= 1D + 22 (el — ys — yaval®)
2 2f1 2f>

1 _ _A
y = Z(s11+ 522 — 2533) = B{y|Y|y) = i (1 + |11]? — 2ly3]?)
3 3f1

—A
+h3—;2<2— 172l = lys — vay2l®).
The functions;;; should have Poisson brackets compatible with the commutators of their

quantum correspondents;,

{sij, s} = iRy I[Sij, Sully)

= i5kjS,'] — i8i1skj. (310)

This definition uniquely yields Poisson brackets for functions on the manifold of coherent
states [16, 19]: any pair of complex valued functiofhg’) and g(y) of the three complex
variablesy = (yi, y2, y3) obeys

.3

i Jaf o af 0

=t ot (—f—g* - —f*—g> (3.11)
h k=1 87/1 3yk 8yk 3)’1
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where the coefficients" are given byt

un_ N 2,2
© = (A1 +A2) <(l+|y1| )+)»1 fz)

= ——— (W + 1) irs—v2 — valnil®
T e 3

13 f1 " 2 f1 )
w = 3+—— '
(A1 +A2) <y1 v A fzy

12

21 e — + * * * * 2
Gy S 02 )
=T ((1 +ya) + —1@) (3.12)
(A1 t+A2) A2 f]_
23

— + ¥ + 2w %
—(A1+A2)(yl ¥5 v3) (1 +|ys] 1V2V3)

1 A2 f1
o= g+ Ty
(A1 +22) M f2

32

= — () A+l — yivays)
(A+rg) 't 3 3

S ((1 +lyal?) + Qﬁwz) .
(A1 +22) A f2

A completely analogous construction can also be given in the degenerate casg whén
or i, = 0. We should only restrict the group elemény) used to generate the coherent states
in (3.3)toy, = 0 forA; = 0 and toy; = 0 for A, = 0. In these cases we end up with
four-dimensional manifolds parametrized, respectively,(y y3) or (y2, v3). All of the
above results on expectation values and Poisson bracket remain valid, once the mentioned
restrictions ony; anda; are inserted.

As already mentioned, the classical limitamounts to taking the dimension of the irreducible
representation to infinity [23]; but this can be done in many ways due to the fact that the
dimension depends on the two parametgranda,. We will keep the ratio

r _
q = )\.1 +)\2 = h)»l (313)
fixed while bothi; andx, go to infinity and thusi = (A1 + A») ' to zero. Let us thus take a
series of irreducible representatiofigr”, nA>1},-1.2.5... with fixed integers.\”, 1 and

(3.14)

1 n— o0
L+
Since in any irreducible representation the ratis fixed, there is a unique correspondence to
the sequence of irreducible representations that define the classical limit. It is easy to see that
the Poisson brackets have a well defined limit under (3.14), as do our classical observables
sij = (y|hS;;ly). Moreover, expectation values of products of operators factorize as follows:

(10102ly) —> {y|01ly){y102ly) for 7 —0 (3.15)
and the connection between the Poisson bracket and the commutator (3.10) is no longer limited
to the observables linear in the generators,

| _ — h—0
ﬁ(yl[ﬁsijhskl»hsmnn)/) —> i {Skis Smn} * {Sijs Smn bkt = {Sij Sk, Smn}- (3.16)

E:

t Itis nottrivial to calculate the coefficienis! directly from definition (3.10). Such a calculation should be performed
using aSUs-invariant symplectic form on the manifold of coherent states. There is a well founded mathematical
theory of symplectic structures (and Poisson brackets) on manifolds of coherent states for various classes of Lie
groups [19, 21, 22]. A thorough mathematical introduction is found in [19], while in [16] the constructiit/fpis
presented in detail.
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As a consequence, the classical observables evolve in the six-dimensional phase space
according to the Hamilton equations

d ,
Eo(t) ={H, 0(r)} (3.17)

with the Hamilton function
H = lim (y|H
E_>O(7| ly)

3

3
_ (1) 2
= E , Sl © § Aoty Stil2Sisls + 7 (3.18)
1

11,12: ]1,12,13,14:1

calculated as the limit of the expectation value of the quantum Hamiltonian (3.1).

Itis obvious that going to the limit via a series of degenerate representations (e.g. keeping
A1 = 0in (3.14)) we formally obtain the same results concerning the form of classical equations
of motion but in the four-dimensional phase space.

The different ways of approaching the classical limit can be interpreted for our model of
many three-level atoms. Obviously, for an arbitrary large number of atoms it is always (at least
in principle) possible to prepare an initial state belonging to some specific representation of
the SU3; symmetry group of the Hamiltonian; the subsequent evolution will then be restricted
to that subspace. For instance, any fully symmetric initial state will evolve solely in the
((N+1)(N+2)/2)-dimensional space of the degenerate representationyithN andx, = 0.

Other initial states will lead to other paramet&isi,. Hence approaching the classical limit
corresponds to increasing the number of atoms and preparing them in the appropriate initial
states. Analogous considerations for a model of a superradiant laser involving many three-level
atoms were presented in [11].

3.2. The dimensionality of the classical phase space

Here we shall explain the occurrence of different dimensionalities for the classical phase space
of a SU3 system in purely classical terms. The connection with the classical limit described
above will be drawn at the end of this section.

Let us consider the classical observable§, j = 1, 2, 3) restricted by

*

ji (3.19)

s11+ 8522 +533=0

Sij =8

and assume their Poisson brackets to be those of the generators of the Li§ggoup
{sklv Smn} = i(smlskn - 6knsml)- (320)

Moreover, we assume the dynamics of these observables generated by some Hamilton function
H = H(s;;) and Hamilton’s equations

d cl
ESU = {H , sij}' (321)
It is now convenient to consider the observabigsto be matrix elements of a traceless
Hermitian matrixS. The traceless Hermitian<3 matrices span an eight-dimensional manifold
in the spacé3,3(C) of all complex 3x 3 matricest. Using the Poisson brackets (3.20) it is

T In general, ifG is a Lie group, ang its Lie algebra, there is a canonical Poisson bracket structugé ahe dual
vector space of [19]. In our case we can identifsug* with sug, both represented as the space of Hermitian traceless
3 x 3 matrices and the canonical Poisson structure is simply the one presented above.
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easy to check that the two Casimir functions

3
Cy = tr82 = Z SijSji
wh (3.22)
c3 = trss = Z SijS jkSki
ijk=1
are constants of motion for any Hamilton functib(s;;). Since any dynamics is restricted
to the hypersurfaces, = const andcs = const, we can consider one intersection of these
hypersurfaces. Each intersection for given consta}q)[scgo) defines a phase spagdd for a
SU3 systemt

M={S€Mz3C):S=8trs=0,rs2=c, tr5°=c}.  (3.23)

Generically, such an intersection will be six-dimensional. However, a closer look reveals that
for some values of the Casimir functions the phase space may have smaller dimension. To
see this let us observe that we can use the eigenvajues, vz of the matrixS instead of

the Casimir invariants to define the classical phase space (3.23). Indeed, the characteristic
equation for a traceless Hermitian matrix reads [24]

detS —v) = =¥ = 2trS2v + 1tr S = (v — )2 — V) (V3 —v).  (3.24)

We see that the coefficients of the characteristic equation are just the Casimir functions. So
there is a one-to-one correspondence between the eigenvalugsys of S and the values of
the Casimir functions. As a consequence, we can rewrite the manifold (3.23) as

M = {S € M3y3(C) : S = ST, eigenvaluegvy, vo, v3), v1 + V2 + V3 = 0} (3.25)

such that the phase space may be said to consist of all complex, Hermitian, traceless matrices,
all having the same eigenvalues v;, v3, with vy + v, +v3 = 0.

With this characterization at hand it is now easy to count the dimensions of the phase
spaces. Any matri§ with given eigenvalues; may be written as a conjugation

V1 0 0
S=U ( 0 v O ) ut=ubw)ut (3.26)
0 0 V3

whereU is some matrix from the grougs. We see, however, thatin (3.26) the correspondence
betweers andU is notone to one. Indeed,if fulfils (3.26) then the sameistrue fof = UU;
if only U, leaves the diagonal matri®(v;) invariant, i.e.UlD(v[)UI = D(v;) (or, in other
words, U; and D(v;) commute). To have a unique characterizatiolsand U we have to
divide out the matrices commuting with(v;) from the groupUs.

Let us first assume that the eigenvalues are nondegeneraiée,v, # vs. Then the
only matricesU € Us; commuting with the diagonal matri®(v;) are diagonal matrices
themselves. So in this case the phase space looks locally (near a diagonal matrix) like
Us/(Up x Uy x Up) = SU3/(Uy x Uy) (for the explicit form of the equivalence see [16])
which is a six-dimensional manifold.

If, however, any two of the eigenvalues are degenerateysay v, then any matrix/
which is of the form

v=(2 ) oz

Tt These phase spaces are symplectic manifolds known as coadjoint orbits of the Li§ §sospe [19].
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whereU is a 2x 2 matrix fromU- will leave the diagonal matri¥ (v;) invariant. This shows
that phase spaceis locally lik&/(U, x Uy) = SU3/(SU, x Uy), which is a four-dimensional
manifold (again global equivalence may be proven).

There are no other nontrivial possibilities. The phase space is thus either six-dimensional
if the eigenvalues; are not degenerate or four-dimensional for degenerate eigenvalues.

The foregoing classical consideration should now be put into the perspective of quantum
mechanics and the classical limit. To that end we remark that the same group quotients
SU3/(Uy x Uy) andSUs/(SU, x Uz) appear in the definition af Uz coherent states. This is,
of course, no accident. In a nondegenerate irreducible representation €0 andi, # 0)
the highest-weight vector is invariant under the action of the subgtQup U; of SUs (a
change in the phase of the vector is admitted for invariance here), whereas for the degenerate
representations (either = 0 or A, = 0) the subgroug U, x U; comes in. In fact, th&Us
coherent states are a symplectic submanifold of the corresponding Hilbert space and, as such,
isomorphic to the phase space attained in the classical limit (mathematicians have developed
the theory of geometric quantization which focuses on this isomorphism [18, 20-22]).

In section 3 we defined the classical observablesand their Poisson brackets in an
appropriate limit2 — 0. The structure is obviously the same as the one considered in the
present section. The limit was performed while keeping fixed a parameter which defines a
sequence of irreducible representations. That parameter also determines the eigenvalues,

g+1 1-2q qg—2

5 2 vi= T (3.28)

This may be checked as follows: first, we realize that the eigenvajudshe matrixs;; are
independent off and may thus be calculated for= 0. Indeed, the coherent stdie) may
be represented as a ‘rotated’ version of the highest-weight $tates €”®)|y = 0), where
M (y) is aHermitian operator linear in the quantum generafgr®n momentarily introducing
a real parameter to generalize the rotation t&"# ) and differentiating w.r.tz we find that
Si; () =D 4 uik(Y)su (O)ML(;/), with a unitary 3x 3 matrixu in which we may set = 1; the
unitarity of u entailss;; () ands;; (0) to have the same eigenvalues. Next,foe= O we have
5ij(0) = v;8;;, and thus from (3.9)%3 = (v1 —12)/2, y = (V1 +v2 — 2v3) /3, V1 + V2 + 13 =0,
while (2.14) and our definition (3.13) of the representative wiEld 13 = ¢ /2, y = (2—q)/3;
these linear relations imply thatdetermines the eigenvaluesas given in (3.28).
The classical Casimir functions are also assigned unique values,

V1 V2

3
2= Z SijSji = %(42 —q+1

i,j=1
3 (3.29)
c3= Z SijSjkSki = %(—26]3 +3¢%+3g—2)
i,j.k=1
while their ranges are, due toQq < 1,
3<c2<} - << (3.30)

Forq = 0 org = 1 only degenerate irreducible representations are involved in the classical
limit. The Casimir functions then take values at the boundaries of the admissible ranges
according to

1 2
1)1:1)2:5 1)1=§
2 1
v3 = —% Vo =v3=—3
3 53 for ¢g=0 and 2 23 3 % for ¢g=1. (3.31)
C2:§ C2:§
2 2
C3=—§ C3=§
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So forg = 0 org = 1 the classical limit leads to a phase space of dimension four. For all
other values O< ¢ < 1 the classical phase space is six-dimensional.

3.3. Action-angle coordinates on the classical phase space

Inthe classical limit we had used the complex coordingtesich nicely fit the group structure
of coherent states. The Poisson brackets of these variables, however, do not have the canonical
form

{Prs @i} = du with k,1=1,2,3. (3.32)

On the other hand, canonical pairs fulfilling (3.32) are desirable in the investigation of
dynamical systems. For instance, if the Hamilton function does not depend on one canonical
coordinate, say;, we immediately know that its conjugatg is a constant of motion. We

may then investigate a manifold of lower dimension spanned by the remaining pairs and regard
p1 a@s a parameter.

Canonical pairs may be constructed by considering the smallest complete set of commuting
quantum observables (i.&, T3, T2) in the classical limit. These give three Poisson commuting
classical observables. The conjugate variables may then be found in different ways [16, 25, 26].
Foregoing the derivation we just give the transformation fromsthéo canonical variables
which we present as action-angle variabpes= Iy, g« = ¢, with ¢ € [0, 2r):

y=101 =1 V12 + 510501 = I3

s12 = eXpigp)\/ 12 — 12

i i 3.33
s13= exp[§(2¢1 t gt ¢3)} vIz+ LA, + exp[§(2¢1 + ¢ — ¢3)] I3 - IB, (3.33)
i i
523 = exp[§(2¢1 — ¢t ¢3)} VIz— DA, — eXP[E(Zfﬁl — 2 — ¢3)} I3+ LB,
The coefficientsA,, B, are defined by
qui 2q_l+]3+£ (2_q +13+ﬁ> <q—+1—13—ﬂ
213 3 2 3 2 3 2
(3.34)

1 2q—1 I 2—q I q+1 I
B,=— [|[-X——+L-= )2+ X——+- =
17214 ( 3 3 2)( 3 3 2)( 3 °2

andg = /\ffxz is the parameter defining the sequence of irreducible representations used.
The consistency of the coordinate transformation (3.33) with the Poisson brackets for the
functionss;; may be checked by direct calculation.

The range of the action variablésin phase space is

1l+qg 2—¢q
I = - - 7
1 ye|: 3 ' 3 }
1-2¢ 1— 2 a4
Is=1t € | max X——q,ﬂ_z . min X_q_z’q_l_X (3.35)
2 3 3 2 2 3 3 2

L =t3e[—1,1].

4. Chaos and integrability in quantum and classical mechanics

In this section we present numerical results for two example systems which illustrate the
dependence of level statistics on the irreducible representations (section 4.2). We also
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investigate the corresponding classical dynamics. We shall show that indeed one and the same
quantum mechanical Hamilton operator may have different classical limits with qualitatively
different dynamics. The different classical limits arise because we have freedom in choosing
a sequence of irreducible representations for the classical limit (these sequences are labelled
by the numbey = Mﬁlkz € [0, 1], which is kept fixed in the limit). We had already shown

in section 3 that different choices gfmay even lead to different dimensions (four or six) of

the classical phase space. Qualitative differences in the classical dynamics become obvious
when a transformation to appropriate (i.e. canonical) variables is made (in the vasjathes
Hamilton function looks the same for any choice of irreducible representations in the classical
limit, but there are hidden constraints on these variables). The two systems investigated here
both have one constant of motion independent of the Hamiltonian itself. So we know from the
start that the four-dimensional classical limit is integrable. However, both examples will turn
out to display chaos in the six-dimensional limit.

In section 3 we showed that to each irreducible representation there is a unique
corresponding classical limit. This correspondence shows up in the level spacing distribution
P(s) of the quantum mechanical systems. In irreducible representations corresponding to a
chaaotic classical limitP (s) is a Wigner distribution, while classical integrability tends to go
with Poissonian level statistics, i.e. an exponenfiéd).

4.1. Two examples

Our example Hamiltonians are

Hy = RT3+ 3h2(S2, + §2)) + 150%(S13S32 + S23531) (4.1)

H, = sin(100hT3) + 3h2(S2, + 53;) + 1007%(S13S32 + S23530). (4.2)
They both commute with the hypercharge

[H;,Y]=0 for i=1,2 (4.3)

so hypercharge is conserved. All guantum mechanical investigations have been performed in
an eigenspace df.

The Hamiltonian H; resembles the Lipkin Hamiltonian (2.10). It is the simplest
Hamiltonian we have found which shows strongly different level spacing distributions in
different irreducible representations. Being only of second-order in the generators such a
Hamiltonian could, in principle, be realized with three-level atoms in a resonator coupled to
detuned modes.

The second Hamiltoniafl, could hardly describe a real physical system because of the
sine function contained. We have chosen to present that Hamiltonian here since we have found
it to possess a beautiful transition from a Poissonian distribution of level spagiggin
the irreducible representations corresponding to an integrable classical limit) to the Wigner
P (s) (in other irreducible representations with a nonintegrable limit). Actually, the Poissonian
statistics in the integrable case could not be expected since the restriction to an eigenspace of
the hypercharge leaves us with but a single degree of freedom in the integrable case. Poissonian
behaviouris really due to the sine function in the Hamiltonian: the functidgkm®s)is somewhat
similar to a (bad) random-number generator, provided the parakisteot a rational multiple
of r andk > m, asn runs through the integers.

In the classical limit we have sgt= ﬁ and have kepy = h, fixed as described in
section 3. We then haveq g < 1 and the classical systems are described by the Hamilton
functions

H{' = t3+ 3(s7, + 557) + 15(s13532 + 523531) (4.4)
sz = sm(lO(lrg) + %(S%z + S%l) + 10(XS13S32 + 503531) (45)
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which if written in terms of the variables, y, s;; (i # j) seem independent of the irreducible
representations used in the classical limit (i.e. independeq}. oflowever, the two Casimir
functionsc, = limy_,072C, andes = limz_,o A3C3, are conserved so that these eight numbers
are not independent. Moreover, like its quantum counteipatte classical hypercharges a
constant of motion. The conservationyojuarantees the integrability of the two Hamiltonians
above in the four-dimensional phase spaces.

Note that there is no free parameter other tlgain the Hamiltonians. Thus our
investigations rely on looking at one and the same Hamiltonian for different irredusiible
representations.

4.2. Quantum chaos in different irreducible representations

For the numerical investigation of the level spacing statistics we have chosen an eigenspace of
the hypercharge with eigenvalltie= *1;3*2 of the Hilbert space of the\f; 1,] representation.
The dimension of this subspace is

d=M+D0+1). (4.6)

This eigenspace has been chosen because it has the largest dimension. For the first Hamiltonian
H; only energy eigenvalues in the rang@.0 < E < 0.5 have been taken into account for
the level statistics. In that range quantum signatures of chaos seem to show up best. For the
second Hamiltonian we did not have to restrict ourselves to any energy range. The spectra
have been unfolded such that the mean level spacing equals unity.

Figures 1 and 2 show the level spacing distributid@) and, in the insets, its integral

N(s) = / ds’ P(s"). 4.7)
0

The thin curves show? (s) andN (s) of random matrix theory (Gaussian orthogonal ensemble
(GOE)) and for a uncorrelated spectrum (Poisson). The Wigner distribution of the GOE is
conjectured to be universal for classically chaotic systems. Uncorrelated specti(with
Poisson distribution are known to be generic for classically integrable systems with more than
one degree of freedom.

The first graph of figure 1 showR(s) andN (s) for the HamiltonianH; in an irreducible
representation witly = 1 corresponding to a four-dimensional classical limit. Since this is
basically a one-freedom system, Poisson behaviour is not expected and Mdedws three
sharp steps at = 0, 1, 2 indicating a very rigid regular spectrum. In the following graghs
is decreased. Far = 0.99, 0.98, 0.95 the sharp stepshi(s) wash out and the distributions
look much similar to a Poisson distribution with a surviving strong peakSfer 0 in P (s).

Since 0< ¢ < linthese cases we have a six-dimensional classical limit so we cannoeknow
priori whether the system is integrable or not. The distributions indicate that we are still near
integrability. However, the peak at= 0 in P(s) becomes smaller fay = 0.9, and fors > 0

the distribution already looks more like a Wigner distribution. Finally,sfee 0.8 universal

level repulsion is fully developed, as can be seen in the graph(of.

The results for the second system show the onset of level repulsion more beautifully in
figure 2. Forg = 1.0 we see here a Poisson distribution. As already mentioned, such absence
of correlations between the levels of a one-degree-of-freedom system is an artifact of the sine
function in the Hamiltonian. However, now the promised beauty of the transition to level
repulsion can be appreciated: fpe= 0.99 andg = 0.98 we see a crossover from Poisson to
Wigner behaviour. Fag = 0.6, P(s) agrees very nicely with the Wigner distribution.
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|

1.0
P(s) . " |Poisson,
0.8 .6 A=135
q =0.9
d=2176
0.6 W oe k=1571
s
0.4
0.2
0.0

"0.0 2.0 s 4.0

Figure 1. Level-spacing distributiod® (s) and its integralV (s) for the Hamiltonian#; in different
irreducible representations. The irreducible representations are labellgdang 1, and by the
parametey, the dimension of the diagonalized matrixdisandk energy eigenvalues in the range
—2.0 < E < 0.5 have been taken into account for the statistics.

A1=1250 n
A2=0
q=1
d=1251
k =1251 r
1.0 N(s,
(O
P(S) . Poissol
08 Poisson 06 =294 A=45
04 A2=6 )\zf30
=08 P R
0.6 021 1/GoE ﬁ zgggg k =1426
0.0
0.0 20 s
0.4 GOE
0.2
0.0 .
0.0 2.0 s 4.0

Figure 2. Level-spacing distributiod® (s) and its integralV (s) for the HamiltonianH; in different
irreducible representations. The labels are as in figure 1.
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4.3. Chaos and integrability in the classical limit

The above results indicate that in the classical limits corresponding to the irreducible
representations used for the level statistics we should see a crossover from integrable to chaotic
dynamics. This crossover is accompanied by the appearance of a new degree of freedom. This
new degree of freedom is, however, very restrictedfoear one (or near zero) such that chaos

is not yet fully developed there.

We start by writing down the Hamilton functio’ andHy' in canonical variables. The
difference of the classical limits for & ¢ < 1 then becomes obvious. In (4.4) and (4.5)
there is a hidden restriction: in the classical limit two Casimir functions have been fixed. In
canonical variables, i.e. in variables fulfilling canonical Poisson bracket relations

{Iia¢j}:8ij for i,j:j., 2,3 (48)
the two Hamilton functions are
H{'(I;, ¢;) = I + 6(I5 — I5) COS2¢) + 30,/ A2 — B2 COS¢h2)60A, B, (I3 SiN(¢p2) SiN(gp3)

—1I2 cog(¢2) Cos(¢h3)) (4.9)
HS'(I;, ;) = Sin(1000p) + (12 — I2) cos2¢7)

+200,/ AZ — B2 cos¢4004,, B, (I3 Sin(¢2) Sin(¢s) — I2 COYp2) COLp3)).
(4.10)
The coefficients4,, B, are given above in (3.34). Neither Hamiltonian dependspon
and hence the classical system has the constant of mftien y, the classical analogue
of the quantum constant. We may therefore work in a phase space spanned by
I, =13, I3 = t, ¢2, p3. With this (rather brutal form of a) symplectic reduction we are left with
adynamics with two degrees of freedom dpek- y is a parameter withranges* < y < %2.

We have choselfy = y = 2"—3‘1 which corresponds to the choice we made for the eigenvalue
of the hypercharg& in the quantum case. The coefficiedts and B, simplify to

A, = ! 1+I ! I 1+I
q_213 q 2 3 2 3 2 3

By= = g+ ien)(2on) (L)
e Topy\T9T 27278 (27 )

The compactness of the phase space is expressed by a limited range of the action Variables
When!; = y = 221, the range of; = ¢ is

(4.11)

g—3<t<3 for 3<¢<1

1-g<1<3 for 0<g<3 (4.12)
and the range of, = t3 (whenlz = ¢ is fixed)

—t <3<t (4.13)

For initial conditions for the action variables which are inside the allowed range one can show
that the trajectories always remain inside this range.

Now for g = 1 orq = 0 the allowed range fof; = ¢ shrinks to one pointjs = ¢ = %
In these cases we remain with a single degree of freedom and its canonical pair of vdsiables
and¢,. The coefficientsd, and B, both vanish and the Hamilton functions become

H{' oIz, ¢2) = Hi' (I, 2) = I + 6(5 — 1) cOX2¢5) (4.14)
HS'\_o(I2, ¢2) = H5'_ (I, ¢2) = sin(100L) + (5 — IZ) cos2¢).  (4.15)
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Figure 3. The upper-left corner panel shows the energy SPQYI = 0 in the reduced two-
dimensional phase space fpe= 0. The other panels show phase portraits in the Poinsarface
of sectiongz = 0 in the energy sheﬂi{’ = 0, for various values af.

Having only one degree of freedom these Hamiltonian systems are, of course, integrable.
However, if we vary the parameterthe range ofl; = ¢ changes from a single point to a
finite interval and the Hamiltonian system has two degrees of freedom. To demonstrate the
appearance of chaos we have chosen to show numerically obtained phase portraits ig Poincar
surfaces of section. Our systems have two degrees of freedgre(id, 1), so an energy shell

and a Poincdr surface of section generically have, respectively, dimension three and two. We
shall restrict all following discussions to the energy sti&ll/; - ¢,) = E = 0 which lies atthe

centre of the energy range (the energy range is bounded from above and below). As &Poincar
surface we choos¢; = 0 and project it onto the plane spannedibyand¢, (no effort has

been made to distinguish in which direction a trajectory pierces the Péisadace). Figure 3
illustrates the crossover from a one-freedom system to a chaotic two-freedom sys#éfh for

The first panel, fog = 1, does not portray a Poin@surface of section but shows the whole
energy shelE = 0 in (reduced) phase space. The following panels show phase portraits in
Poincaé surfaces of section as described above. For valugsvefy near to 1, the phase
portraits are still confined to a narrow region around the energy shellfod. Itis only when

q is considerably reduced that the phase portrait occupies a larger region(ip, g plane

and chaos occurs (very few periodic orbits can be seen). In figure 4 we have magnified regions
from two of the phase portraits. In the upper casegfee 0.98, the phase portrait is still
confined to a narrow region and we see lots of stable tori. This fits well with the Poissonian
level-spacing distributions we find in irreducible representations with the same vajeex
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gq=0.98

q=0.9

3.4+
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-0.5 -0.3 -0.2
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Figure 4. In these two panels we have magnified a region from two of the phase portraits from
figure 3.

figure 1). In the lower case, with = 0.9, the phase portrait has broadened and no stable tori
remain visible. Again this fits the corresponding level-spacing distribution which is Wigner
for the same value af.

Figure 5 shows the energy shéll’ = E = 0 for ¢ = 1 and phase portraits in Poinéar
surfaces of section for various valugs< 1 for Hs'. Again, the energy shell fof = 1 is
one-dimensional and all trajectories with enetgy= 0 are confined to it. Ag is reduced
we have the same qualitative behaviour as#igt. The phase portraits broaden indicating
that the three-dimensional volume of the energy shell grows. Again, chaos appears as soon as
sufficient broadening has emerged, once again in correspondence with the results for the level
statistics (see figure 2).

5. Conclusion

By considering two model systems wifli/; generators as dynamical variables we have shown
that statistical properties of quantum spectra depend not only on the form of the Hamiltonian
but also on the representation of tfi&; group relevant to the problem. One and the same
Hamiltonian can exhibit features characteristic of integrability (clustering of the energy levels)
as well as of chaotic systems (level repulsion). We showed that this can be attributed to
different integrability properties of the classical limit, which in the caseSok can be
attained in many ways depending on the chosen sequences of irreducible representations.
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g=1.0

0=0.95
T

40t o

Figure 5. The upper-left corner panel shows the energy sﬂzﬂl = 0 in the reduced two-
dimensional phase space fpe= 0. The other panels show phase portraits in the Poinsanface
of sectiongz = 0 in the energy shelHé’l = 0, for various values of.

In particular, the dimensionality of the classical phase space depends on the way the classical
limit is approached, and could be reduced from six (the generic case) to four (corresponding
to degenerate irreducible representations). If there is one constant of motion the classical
dynamics is integrable in the four-dimensional phase spgcesdandg = 1) but generically
non-integrable in the six-dimensional phase spaces {0< 1). Correspondingly, the spectra

of the quantum Hamiltonian with one constant of motion only shows level repulsion for the
irreducible representationsq; A,], with bothi; # 0 anda, # 0.
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