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Abstract. Hamiltonians built ofSU3 generators are presented which allow for qualitatively
different classical limits. The generators of the groupSU3 give eight independent observables.
In the classical limit two invariant functions of these observables, the so-called Casimir functions
c2 andc3, take fixed values in the ranges1

2 6 c2 6 2
3 and− 2

9 6 c3 6 2
9 (anSU2 system, in

contrast, has just one such Casimir function, the squared total angular momentum). Generically,
this leads to a six-dimensional phase space. However, for two special (‘degenerate’) pairs of values
c2 = 2

3 , c3 = − 2
9 andc2 = 2

3 , c3 = 2
9 the classical dynamics is only four-dimensional. One and

the same Hamilton function of the generators may be integrable in the four-dimensional phase space
but generate chaos in the six-dimensional case. We give two examples of Hamiltonians for which
that alternative does arise; one of these is closely related to the Lipkin Hamiltonian familiar from
nuclear shell models. The transition from integrable to chaotic classical behaviour is accompanied
by the usual quantum transition from level clustering to level repulsion.

1. Introduction

There is a well established connection between the statistical properties of spectra of quantum
systems with their classical counterparts. Generic classically nonintegrable systems are, on the
quantum level, characterized by level repulsion, as well described by random-matrix theory.
Classical integrability for two or more degrees of freedom, on the other hand, tends to go with
level clustering [1–3].

In this paper we investigate a special class of systems which on the classical level have a
compact phase space and, as a quantum mechanical consequence, a finite-dimensional Hilbert
space. The classical limit is approached by increasing the dimension of the Hilbert space.

The simplest example of this kind is given by the dynamics of an angular momentum
or spin. Due to the formal equivalence between a spin-1

2 and a two-level atom, collective
dynamics of any number of identical two-level atoms can be described in terms of an angular
momentum. Quantum signatures of chaos have been investigated in such systems for a long
time (the kicked top [3]). When the number of atoms grows, the associated spin dynamics
approaches a well defined classical limit. As is well known, the classical phase space of an
angular momentum is two-dimensional (the surface of a sphere), corresponding to a single
degree of freedom. To allow for chaos, periodic driving must be allowed for, as is indeed the
case for the kicked top. Autonomous chaotic dynamics would require at least two coupled
angular momenta [4,5].

The basic symmetry for a three-level atom [6] isSU3. In that case the algebra of
observables is spanned by eight quantities, the generators of the Lie groupSU3. The Hilbert
space of the quantum system is again finite-dimensional. In fact, if several identical three-
level atoms are to be described, the Hilbert space dimension depends on the representation
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of SU3 relevant for the actual configuration of the system. Irreducible representations of
SU3 are indexed by two independent quantum numbers (in contrast to the case of the angular
momentum where a single quantum number, the total spinj , suffices to uniquely characterize
the representation). There are thus many different ways of increasing the Hilbert space
dimension towards a classical limit. We shall show that even the dimension of the classical
phase space depends on the method of selection: the classical dynamics can involve either two
or three degrees of freedom.

An interesting alternative could thus arise for autonomous dynamics with a Hamiltonian
operator built bySU3 generators. Such a given Hamiltonian could yield integrable classical
dynamics in the four-dimensional phase space and chaotic motion in six dimensions. As
the quantum analogue of that alternative one might expect, for one and the same quantum
Hamiltonian operator, level clustering and level repulsion, depending on the representation
chosen.

We shall, indeed, present two examples of Hamiltonians which do have very different
spectral statistics in different irreducible representations. Level clustering is observed for
irreducible representations that lie on the path to integrable classical dynamics and level
repulsion sets in which the irreducible representation lies on the path to non-integrable
dynamics.

Even though we have not selected our example Hamiltonians according to easy
experimental realizability, it is clear that switching between qualitatively different dynamics
in a givenSU3 system should be observable. At any rate, one of our example Hamiltonians
is familiar from nuclear shell models [7–10]. Realizations in super-radiant lasers with many
collectively pumped and radiating three-level atoms [11] are also imaginable†.

2. Quantum mechanics of a large number of three-level atoms with collective interaction

2.1. Quantum mechanical description of a single three-level atom

The Hilbert space of a single three-level atom is spanned by the orthonormal vectors

|1〉 =
( 1

0
0

)
|2〉 =

( 0
1
0

)
|3〉 =

( 0
0
1

)
. (2.1)

They are connected by the nine linear operators

τij = |i〉〈j | i, j = 1, 2, 3. (2.2)

The operatorτij describes a transition from the state|j〉 to the state|i〉, and its expectation
value has the meaning of a complex polarization or coherence fori 6= j , and of an occupation
probability in the diagonal casei = j . We incur the commutation relations‡

[τij , τkl ] = δkj τil − δilτkj . (2.3)

The canonical group of basis transformations isSU3, i.e. the group of unitary 3×3 matrices
with unit determinant (an overall phase shift of basis vectors has been excluded here as it leaves
all physical properties of basis vectors unchanged).

Any product of the operatorsτij can be expanded in a linear combination using

τij τkl = |i〉〈j ||k〉〈l| = δkj τil . (2.4)

† Though not closely related to our work, we would like to draw attention to a paper on inter- and intra-shell chaos
in the hydrogen atom [12], where the relevant Hilbert spaces (the hydrogen shells) have finite dimension.
‡ These are the commutator relations of the Lie algebragl3(C) (restricted to Hermitian generators it gives the Lie
algebrau3).
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Whatever HamiltonianH may be at work, the Heisenberg equation

d

dt
τij = i

h̄
[H, τij ] (2.5)

is thus linear in the operatorsτkl and can be easily integrated.

2.2. Many three-level atoms with collective interaction

ForN identical but distinguishable three-level atoms (to be referred to simply as three-level
atoms hereafter) the atomic state is a vector in theN -fold tensor product of the Hilbert space
of a single atom. We then incur collective coherences and occupation numbers of the atoms,

Sij =
N∑
l=1

τ
(l)
ij . (2.6)

Hereτ (l)ij acts asτij in the Hilbert space of thelth atom (and as unity in the Hilbert spaces of
all other atoms). The operatorsSij obey the same commutator relations (2.3) as theτij†. The
diagonal operatorsSii fulfil

S11 + S22 + S33 = N. (2.7)

We may, therefore, restrict our attention to operators depending only on differences of the
diagonal generators. In common usage in particle physics are the combinations

T3 := 1
2(S11− S22)

Y := 1
3(S11 + S22− 2S33)

(2.8)

usually referred to as the third components of isospin and hypercharge; we shall adhere to this
notation although its physical significance, in our case, amounts to no more than a difference
in occupation numbers. At any rate, the isospin and hypercharge variables together with the
six coherencesSij , with i 6= j , span the Lie algebra of the groupSU3.

We shall consider quantum mechanical systems built up by a fixed large numberN of
three-level atoms with a Hamiltonian depending only on the collective operatorsT3, Y and
Sij (i 6= j):

H = H(T3, Y, Sij ) i 6= j H = H †. (2.9)

Interesting phenomena occur if we allow for Hamiltonians nonlinear in the generators, such
as

HLipkin = a(S11− S33) + b
3∑

i,j=1,i 6=j
S2
ij (2.10)

which is known as the Lipkin Hamiltonian used in nuclear shell models [7–10]. Such Hamilton
operators can also arise for three-level atoms collectively coupled to eigenmodes of the
electromagnetic field in a cavity. They are block diagonal and each block is connected to
an irreducible representation of the Lie groupSU3. From now on we shall always assume that
the Hamilton matrix has been reduced to one of these irreducible blocks.

† TheSij span a representation of the Lie algebragl3(C).
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2.3. IrreducibleSU3 representations

In this section we recall the most important facts on irreducible representations of the Lie group
SU3. Readers familiar with basic representation theory should skip this section.

We start with some words onSU2 and its generators, angular momenta. The familiar
irreducible representations are labelled by the one-integer or half-integer numberj . As
generators we may take three linear operators (matrices)J+, J−, J3 in a (2j + 1)-dimensional
Hilbert space with the well known angular momentum commutator relations

[J+, J−] = 2J3 [J3, J±] = J±. (2.11)

A basis of the Hilbert space is provided by the eigenstates ofJ3:

J3|m; j〉 = m|m; j〉 m = −j,−j + 1, . . . , j − 1, j (2.12)

and the numberj is related to the squared total angular momentum operatorJ 2 = J3(J3 + 1)+
J−J+, which is a constant in an irreducible representationJ 2 = j (j + 1)I. The numberj also
characterizes an irreducible representation as being the highest eigenvalue ofJ3:

J3|j〉j = j |j ; j〉. (2.13)

The corresponding eigenvector|j ; j〉 is usually called the highest-weight vector.
Just as forSU2, any irreducible representation ofSU3 is uniquely characterized by its

highest-weight vector|µ〉. This highest-weight vector is unique up to a phase factor and
defined as a common eigenstate ofT3 andY with eigenvalues

T3|µ〉 = λ1

2
|µ〉

Y |µ〉 = λ1 + 2λ2

3
|µ〉

(2.14)

and it is annihilated by raising operators,

S12|µ〉 = S23|µ〉 = S13|µ〉 = 0. (2.15)

The non-negative integersλ1, λ2 = 0, 1, 2, . . . are used as labels for the irreducibleSU3

representations, just as the quantum numberj is used to label irreducibleSU2 representations.
We shall denote the representation characterized byλ1 andλ2 as [λ1; λ2].

In any representation [λ1; λ2] with eitherλ1 = 0 or λ2 = 0, the two operatorsT3 and
Y build a complete set of commuting observables, i.e. there is a basis of eigenvectors such
that the eigenvalues ofT3 andY are not degenerate. In a general representation [λ1; λ2] with
λ1 6= 0 andλ2 6= 0 such a basis is degenerate and the smallest complete set of commuting
observables consists of the three operatorsT3, Y andT 2 = T3(T3 + 1) + S21S12 (we shall call
T 2 the total squared isospin).

The alternative just described for the number of operators in the smallest complete set
of commuting observables will turn out to correspond to an alternative for the dimensionality
of the phase space in the classical limit. Every operator in this commuting set gives one
classical freedom. The classical limit thus yields a four-dimensional phase space for irreducible
representations with one of theλi vanishing, while six dimensions arise if neither of theλi
vanishes.

The construction of bases as well as matrices representing the operatorsSij was pioneered
by Gelfand and Zetlin forSUn andSOn [13], see also [14,15].

In the SU2 case an irreducible representation is uniquely identified by the value of
the squared angular momentumJ 2, an operator commuting with all generators. A similar
characterization of irreducible representations can be made forSU3. To this end we need two
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independent operators commuting with allSU3 generators, the so-called Casimir operators.
In terms of the generatorsSij , these read

C2 =
3∑

i,j=1

SijSji (2.16)

C3 =
3∑

i,j,k=1

SijSjkSki . (2.17)

In the Hilbert space of an irreducible representation [λ1; λ2] they act as multiples of the identity
operator

C2 = a(λ1, λ2)I C3 = b(λ1, λ2)I. (2.18)

The constantsa andb uniquely determine (and are uniquely determined by) the values ofλ1

andλ2:

a(λ1, λ2) = 2
3(λ

2
1 + λ1λ2 + λ2

2 + 3λ1 + 3λ2) (2.19)

b(λ1, λ2) = 1
9(2λ

3
1− 2λ3

2 + 3λ2
1λ2 − 3λ1λ

2
2 + 18λ2

1 + 9λ1λ2 + 36λ1 + 18λ2) (2.20)

and, therefore, also provide a unique characterization of each irreducible representation.

3. Classical limit

3.1. Construction of the classical limit viaSU3 coherent states

To perform the classical limit we must specify quantitiessij corresponding to the quantum
generatorsSij , calculate their Poisson brackets, characterize the phase space, and, finally,
concretize the technically empty ‘¯h → 0’ to a meaningful limit for controllable parameters.
In particular, a quantum dynamics generated by a Hamiltonian of the form

H =
3∑

l1,l2=1

a
(1)
l1l2
h̄Sl1l2 +

3∑
l1,l2,l3,l4=1

a
(2)
l1l2l3l4

h̄2Sl1l2Sl3l4 + · · · (3.1)

with coefficientsa(i) independent of ¯h will then yield a classical dynamics generated by an
associated Hamiltion functionHcl with thesij as independent variables.

In the case ofSU2, the dimension 2j + 1 of irreducible representations can be taken
as a controllable representative of 1/h̄. The classical limit arises by sending the dimension
to infinity. It is natural to proceed analogously forSU3. However, since the dimension
of an irreducible representation here depends on the two integer parametersλ1 andλ2 as
d = (λ1+1)(λ2+1)(λ1+λ2+2)

2 , there are many possibilities of approaching the classical limit via
different irreducible representations with increasing dimensions. We shall eventually be led
to choosing the representative of ¯h ash̄ = (λ1 + λ2)

−1.
In an earlier paper [16] two of us constructed the classical limit and the classical phase

space usingSU3 coherent states. Referring the reader to [16] for details here we repeat only
what is needed for our further considerations.

Non-normalized coherent states are found for each non-degenerate (λ1; λ2 6= 0)
irreducible representation [λ1; λ2] by acting on the highest weight vector|µ〉 (2.15), (2.14)
with all elements of the group of lower-triangular complex matrices as [17,18]

||γ 〉 = b(γ )|µ〉 (3.2)

b(γ ) = exp(γ3S31) exp(γ1S21) exp(γ2S32) (3.3)

with the shorthand notationγ = (γ1, γ2, γ3) ∈ C3.
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To normalize the states we calculate the norm

〈γ ||γ 〉 = f λ1
1 f

λ2
2 (3.4)

obtain

f1 = 1 + |γ1|2 + |γ3|2 (3.5)

f2 = 1 + |γ2|2 + |γ3− γ1γ2|2 (3.6)

and define the normalized coherent states by

|γ 〉 = f −λ1/2
1 f

−λ2/2
2 ||γ 〉. (3.7)

The coherent states make up aSU3-invariant submanifold of Hilbert space, i.e.

g|γ 〉 = eiα(γ,g)|γ ′(γ, g)〉 for g = exp

(
i
∑

aklSkl

)
∈ SU3. (3.8)

The coherent states build a manifold with real dimension six (forλ1, λ2 6= 0) or four (for
λ1 = 0 or λ2 = 0) [16]. In the classical limit the submanifold will become, by appropriate
rescaling, the classical phase space. Turning to the six-dimensional case first, we now proceed
to defining observables and Poisson brackets on the manifold of coherent states.

As classical observablessij we take the expectation values of the generatorsSij with
respect to coherent states. Straightforward calculations give

s32 = h̄〈γ |S32|γ 〉 = h̄λ1

f1
γ1γ

∗
3 + h̄

λ2

f2
γ ∗2

s31 = h̄〈γ |S31|γ 〉 = h̄λ1

f1
γ ∗3 + h̄

λ2

f2
(γ ∗3 − γ ∗1 γ ∗2 )

s21 = h̄〈γ |S21|γ 〉 = h̄λ1

f1
γ ∗1 − h̄

λ2

f2
γ2(γ

∗
3 − γ ∗1 γ ∗2 )

s23 = h̄〈γ |S23|γ 〉 = h̄λ1

f1
γ ∗1 γ3 + h̄

λ2

f2
γ2

s13 = h̄〈γ |S13|γ 〉 = h̄λ1

f1
γ3 + h̄

λ2

f2
(γ3− γ1γ2)

s12 = h̄〈γ |S12|γ 〉 = h̄λ1

f1
γ1− h̄λ2

f2
γ ∗2 (γ3− γ1γ2)

t3 = 1

2
(s11− s22) = h̄〈γ |T3|γ 〉 = h̄ λ1

2f1
(1− |γ1|2) + h̄

λ2

2f2
(|γ2|2 − |γ3− γ1γ2|2)

y = 1

3
(s11 + s22− 2s33) = h̄〈γ |Y |γ 〉 = h̄ λ1

3f1
(1 + |γ1|2 − 2|γ3|2)

+h̄
λ2

3f2
(2− |γ2|2 − |γ3− γ1γ2|2).

(3.9)

The functionssij should have Poisson brackets compatible with the commutators of their
quantum correspondentsSij ,

{sij , skl} := ih̄〈γ |[Sij , Skl ]|γ 〉
= iδkj sil − iδilskj . (3.10)

This definition uniquely yields Poisson brackets for functions on the manifold of coherent
states [16, 19]: any pair of complex valued functionsf (γ ) andg(γ ) of the three complex
variablesγ = (γ1, γ2, γ3) obeys

{f, g} = i

h̄

3∑
k,l=1

ωkl
(
∂f

∂γl

∂g

∂γ ∗k
− ∂f

∂γ ∗k

∂g

∂γl

)
(3.11)
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where the coefficientsωkl are given by†

ω11 = f1

(λ1 + λ2)

(
(1 + |γ1|2) +

λ2

λ1

f1

f2

)
ω12 = 1

(λ1 + λ2)
(γ ∗1 + γ2γ

∗
3 )(γ

∗
1 γ3− γ2 − γ2|γ1|2)

ω13 = f1

(λ1 + λ2)

(
γ ∗1 γ3 +

λ2

λ1

f1

f2
γ2

)
ω21 = 1

(λ1 + λ2)
(γ1 + γ ∗2 γ3)(γ1γ

∗
3 − γ ∗2 − γ ∗2 |γ1|2)

ω22 = f2

(λ1 + λ2)

(
(1 + |γ2|2) +

λ1

λ2

f2

f1

)
ω23 = 1

(λ1 + λ2)
(γ1 + γ ∗2 γ3)(1 + |γ3|2 − γ ∗1 γ ∗2 γ3)

ω31 = f1

(λ1 + λ2)

(
γ1γ

∗
3 +

λ2

λ1

f1

f2
γ ∗2

)
ω32 = 1

(λ1 + λ2)
(γ ∗1 + γ2γ

∗
3 )(1 + |γ3|2 − γ1γ2γ

∗
3 )

ω33 = f1

(λ1 + λ2)

(
(1 + |γ3|2) +

λ2

λ1

f1

f2
|γ2|2

)
.

(3.12)

A completely analogous construction can also be given in the degenerate case whenλ1 = 0
orλ2 = 0. We should only restrict the group elementb(γ ) used to generate the coherent states
in (3.3) toγ2 = 0 for λ1 = 0 and toγ1 = 0 for λ2 = 0. In these cases we end up with
four-dimensional manifolds parametrized, respectively, by(γ1, γ3) or (γ2, γ3). All of the
above results on expectation values and Poisson bracket remain valid, once the mentioned
restrictions onγi andλi are inserted.

As already mentioned, the classical limit amounts to taking the dimension of the irreducible
representation to infinity [23]; but this can be done in many ways due to the fact that the
dimension depends on the two parametersλ1 andλ2. We will keep the ratio

q = λ1

λ1 + λ2
= h̄λ1 (3.13)

fixed while bothλ1 andλ2 go to infinity and thus ¯h = (λ1 + λ2)
−1 to zero. Let us thus take a

series of irreducible representations{[nλ(0)1 , nλ
(0)
2 ]}n=1,2,3,... with fixed integersλ(0)1 , λ(0)2 and

h̄ = 1

(λ
(0)
1 + λ(0)2 )n

n→∞−→ 0. (3.14)

Since in any irreducible representation the ratioq is fixed, there is a unique correspondence to
the sequence of irreducible representations that define the classical limit. It is easy to see that
the Poisson brackets have a well defined limit under (3.14), as do our classical observables
sij = 〈γ |h̄Sij |γ 〉. Moreover, expectation values of products of operators factorize as follows:

〈γ |O1O2|γ 〉 −→ 〈γ |O1|γ 〉〈γ |O2|γ 〉 for h̄→ 0 (3.15)

and the connection between the Poisson bracket and the commutator (3.10) is no longer limited
to the observables linear in the generators,
i

h̄
〈γ |[h̄Sij h̄Skl, h̄Smn]|γ 〉 h̄→0−→ sij {skl, smn} + {sij , smn}skl = {sij skl, smn}. (3.16)

† It is not trivial to calculate the coefficientsωkl directly from definition (3.10). Such a calculation should be performed
using aSU3-invariant symplectic form on the manifold of coherent states. There is a well founded mathematical
theory of symplectic structures (and Poisson brackets) on manifolds of coherent states for various classes of Lie
groups [19,21,22]. A thorough mathematical introduction is found in [19], while in [16] the construction forSU3 is
presented in detail.
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As a consequence, the classical observables evolve in the six-dimensional phase space
according to the Hamilton equations

d

dt
o(t) = {Hcl, o(t)} (3.17)

with the Hamilton function

Hcl = lim
h̄→0
〈γ |H |γ 〉

=
3∑

l1,l2=1

a
(1)
l1l2
sl1l2 +

3∑
l1,l2,l3,l4=1

a
(2)
l1l2l3l4

sl1l2sl3l4 + · · · (3.18)

calculated as the limit of the expectation value of the quantum Hamiltonian (3.1).
It is obvious that going to the limit via a series of degenerate representations (e.g. keeping

λ1 = 0 in (3.14)) we formally obtain the same results concerning the form of classical equations
of motion but in the four-dimensional phase space.

The different ways of approaching the classical limit can be interpreted for our model of
many three-level atoms. Obviously, for an arbitrary large number of atoms it is always (at least
in principle) possible to prepare an initial state belonging to some specific representation of
theSU3 symmetry group of the Hamiltonian; the subsequent evolution will then be restricted
to that subspace. For instance, any fully symmetric initial state will evolve solely in the
((N+1)(N+2)/2)-dimensional space of the degenerate representation withλ1 = N andλ2 = 0.
Other initial states will lead to other parametersλ1, λ2. Hence approaching the classical limit
corresponds to increasing the number of atoms and preparing them in the appropriate initial
states. Analogous considerations for a model of a superradiant laser involving many three-level
atoms were presented in [11].

3.2. The dimensionality of the classical phase space

Here we shall explain the occurrence of different dimensionalities for the classical phase space
of a SU3 system in purely classical terms. The connection with the classical limit described
above will be drawn at the end of this section.

Let us consider the classical observablessij (i, j = 1, 2, 3) restricted by

sij = s∗ji
s11 + s22 + s33 = 0

(3.19)

and assume their Poisson brackets to be those of the generators of the Lie groupSU3,

{skl, smn} = i(δmlskn − δknsml). (3.20)

Moreover, we assume the dynamics of these observables generated by some Hamilton function
Hcl = Hcl(sij ) and Hamilton’s equations

d

dt
sij = {Hcl, sij }. (3.21)

It is now convenient to consider the observablessij to be matrix elements of a traceless
Hermitian matrixS. The traceless Hermitian 3×3 matrices span an eight-dimensional manifold
in the spaceM3×3(C) of all complex 3× 3 matrices†. Using the Poisson brackets (3.20) it is

† In general, ifG is a Lie group, andg its Lie algebra, there is a canonical Poisson bracket structure ong∗, the dual
vector space ofg [19]. In our case we can identifysu3

∗ with su3, both represented as the space of Hermitian traceless
3× 3 matrices and the canonical Poisson structure is simply the one presented above.
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easy to check that the two Casimir functions

c2 = tr S2 =
3∑

i,j=1

sij sji

c3 = tr S3 =
3∑

i,j,k=1

sij sjkski

(3.22)

are constants of motion for any Hamilton functionh(sij ). Since any dynamics is restricted
to the hypersurfacesc2 = const andc3 = const, we can consider one intersection of these
hypersurfaces. Each intersection for given constantsc

(0)
2 , c

(0)
3 defines a phase spaceM for a

SU3 system†

M = {S ∈M3×3(C) : S = S†, tr S = 0, tr S2 = c(0)2 , tr S3 = c(0)3 }. (3.23)

Generically, such an intersection will be six-dimensional. However, a closer look reveals that
for some values of the Casimir functions the phase space may have smaller dimension. To
see this let us observe that we can use the eigenvaluesν1, ν2, ν3 of the matrixS instead of
the Casimir invariants to define the classical phase space (3.23). Indeed, the characteristic
equation for a traceless Hermitian matrix reads [24]

det(S − ν) = −ν3− 1
2 tr S2ν + 1

3 tr S3 = (ν1− ν)(ν2 − ν)(ν3− ν). (3.24)

We see that the coefficients of the characteristic equation are just the Casimir functions. So
there is a one-to-one correspondence between the eigenvaluesν1, ν2, ν3 of S and the values of
the Casimir functions. As a consequence, we can rewrite the manifold (3.23) as

M = {S ∈M3×3(C) : S = S†, eigenvalues(ν1, ν2, ν3), ν1 + ν2 + ν3 = 0} (3.25)

such that the phase space may be said to consist of all complex, Hermitian, traceless matrices,
all having the same eigenvaluesν1, ν2, ν3, with ν1 + ν2 + ν3 = 0.

With this characterization at hand it is now easy to count the dimensions of the phase
spaces. Any matrixS with given eigenvaluesνi may be written as a conjugation

S = U
(
ν1 0 0
0 ν2 0
0 0 ν3

)
U† = UD(νi)U† (3.26)

whereU is some matrix from the groupU3. We see, however, that in (3.26) the correspondence
betweenS andU is not one to one. Indeed, ifU fulfils (3.26) then the same is true forU ′ = UU1

if only U1 leaves the diagonal matrixD(νi) invariant, i.e.U1D(νi)U
†
1 = D(νi) (or, in other

words,U1 andD(νi) commute). To have a unique characterization ofS andU we have to
divide out the matrices commuting withD(νi) from the groupU3.

Let us first assume that the eigenvalues are nondegenerate,ν1 6= ν2 6= ν3. Then the
only matricesU ∈ U3 commuting with the diagonal matrixD(νi) are diagonal matrices
themselves. So in this case the phase space looks locally (near a diagonal matrix) like
U3/(U1 × U1 × U1) = SU3/(U1 × U1) (for the explicit form of the equivalence see [16])
which is a six-dimensional manifold.

If, however, any two of the eigenvalues are degenerate, sayν1 = ν2, then any matrixU
which is of the form

U =
(
Ũ 0
0 1

)
(3.27)

† These phase spaces are symplectic manifolds known as coadjoint orbits of the Lie groupSU3, see [19].
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whereŨ is a 2× 2 matrix fromU2 will leave the diagonal matrixD(νi) invariant. This shows
that phase space is locally likeU3/(U2×U1) = SU3/(SU2×U1), which is a four-dimensional
manifold (again global equivalence may be proven).

There are no other nontrivial possibilities. The phase space is thus either six-dimensional
if the eigenvaluesνi are not degenerate or four-dimensional for degenerate eigenvalues.

The foregoing classical consideration should now be put into the perspective of quantum
mechanics and the classical limit. To that end we remark that the same group quotients
SU3/(U1×U1) andSU3/(SU2×U1) appear in the definition ofSU3 coherent states. This is,
of course, no accident. In a nondegenerate irreducible representation (i.e.λ1 6= 0 andλ2 6= 0)
the highest-weight vector is invariant under the action of the subgroupU1 × U1 of SU3 (a
change in the phase of the vector is admitted for invariance here), whereas for the degenerate
representations (eitherλ1 = 0 orλ2 = 0) the subgroupSU2 × U1 comes in. In fact, theSU3

coherent states are a symplectic submanifold of the corresponding Hilbert space and, as such,
isomorphic to the phase space attained in the classical limit (mathematicians have developed
the theory of geometric quantization which focuses on this isomorphism [18,20–22]).

In section 3 we defined the classical observablessij and their Poisson brackets in an
appropriate limith̄ −→ 0. The structure is obviously the same as the one considered in the
present section. The limit was performed while keeping fixed a parameter which defines a
sequence of irreducible representations. That parameter also determines the eigenvalues,

ν1 = q + 1

3
ν2 = 1− 2q

3
ν3 = q − 2

3
. (3.28)

This may be checked as follows: first, we realize that the eigenvaluesνi of the matrixsij are
independent ofγ and may thus be calculated forγ = 0. Indeed, the coherent state|γ 〉 may
be represented as a ‘rotated’ version of the highest-weight state,|γ 〉 = eiM(γ )|γ = 0〉, where
M(γ ) is a Hermitian operator linear in the quantum generatorsSij ; on momentarily introducing
a real parameterτ to generalize the rotation to eiτM(γ ) and differentiating w.r.t.τ we find that
sij (γ ) =

∑
kl uik(γ )skl(0)u

†
lj (γ ), with a unitary 3×3 matrixu in which we may setτ = 1; the

unitarity ofu entailssij (γ ) andsij (0) to have the same eigenvalues. Next, forγ = 0 we have
sij (0) = νiδij , and thus from (3.9),t3 = (ν1− ν2)/2, y = (ν1 + ν2− 2ν3)/3, ν1 + ν2 + ν3 = 0,
while (2.14) and our definition (3.13) of the representative of ¯h yield t3 = q/2, y = (2−q)/3;
these linear relations imply thatq determines the eigenvaluesνi as given in (3.28).

The classical Casimir functions are also assigned unique values,

c2 =
3∑

i,j=1

sij sji = 2
3(q

2 − q + 1)

c3 =
3∑

i,j,k=1

sij sjkski = 1
9(−2q3 + 3q2 + 3q − 2)

(3.29)

while their ranges are, due to 06 q 6 1,
1
2 6 c2 6 2

3 − 2
9 6 c3 6 2

9. (3.30)

For q = 0 or q = 1 only degenerate irreducible representations are involved in the classical
limit. The Casimir functions then take values at the boundaries of the admissible ranges
according to

ν1 = ν2 = 1
3

ν3 = − 2
3

c2 = 2
3

c3 = − 2
9

 for q = 0 and

ν1 = 2
3

ν2 = ν3 = − 1
3

c2 = 2
3

c3 = 2
9

 for q = 1. (3.31)
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So forq = 0 or q = 1 the classical limit leads to a phase space of dimension four. For all
other values 0< q < 1 the classical phase space is six-dimensional.

3.3. Action-angle coordinates on the classical phase space

In the classical limit we had used the complex coordinatesγ which nicely fit the group structure
of coherent states. The Poisson brackets of these variables, however, do not have the canonical
form

{pk, ql} = δkl with k, l = 1, 2, 3. (3.32)

On the other hand, canonical pairs fulfilling (3.32) are desirable in the investigation of
dynamical systems. For instance, if the Hamilton function does not depend on one canonical
coordinate, sayq1, we immediately know that its conjugatep1 is a constant of motion. We
may then investigate a manifold of lower dimension spanned by the remaining pairs and regard
p1 as a parameter.

Canonical pairs may be constructed by considering the smallest complete set of commuting
quantum observables (i.e.Y, T3, T

2) in the classical limit. These give three Poisson commuting
classical observables. The conjugate variables may then be found in different ways [16,25,26].
Foregoing the derivation we just give the transformation from thesij to canonical variables
which we present as action-angle variablespk = Ik, qk = φk, with φ ∈ [0, 2π):

y = I1 t3 = I2
√
t23 + s12s21 = I3

s12 = exp(iφ2)

√
I 2

3 − I 2
2

s13 = exp

[
i

2
(2φ1 + φ2 + φ3)

]√
I3 + I2Aq + exp

[
i

2
(2φ1 + φ2 − φ3)

]√
I3− I2Bq

s23 = exp

[
i

2
(2φ1− φ2 + φ3)

]√
I3− I2Aq − exp

[
i

2
(2φ1− φ2 − φ3)

]√
I3 + I2Bq.

(3.33)

The coefficientsAq,Bq are defined by

Aq = 1

2I3

√(
2q − 1

3
+ I3 +

I1

2

)(
2− q

3
+ I3 +

I1

2

)(
q + 1

3
− I3− I1

2

)
Bq = 1

2I3

√(
−2q − 1

3
+ I3− I1

2

)(
2− q

3
− I3 +

I1

2

)(
q + 1

3
+ I3− I1

2

) (3.34)

andq = λ1
λ1+λ2

is the parameter defining the sequence of irreducible representations used.
The consistency of the coordinate transformation (3.33) with the Poisson brackets for the

functionssij may be checked by direct calculation.
The range of the action variablesIj in phase space is

I1 ≡ y ∈
[
−1 +q

3
,

2− q
3

]
I3 ≡ t ∈

[
max

{
y

2
− 1− 2q

3
,

1− 2q

3
− y

2

}
,min

{
y

2
− q − 2

3
,
q + 1

3
− y

2

}]
I2 ≡ t3 ∈ [−t, t ].

(3.35)

4. Chaos and integrability in quantum and classical mechanics

In this section we present numerical results for two example systems which illustrate the
dependence of level statistics on the irreducible representations (section 4.2). We also
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investigate the corresponding classical dynamics. We shall show that indeed one and the same
quantum mechanical Hamilton operator may have different classical limits with qualitatively
different dynamics. The different classical limits arise because we have freedom in choosing
a sequence of irreducible representations for the classical limit (these sequences are labelled
by the numberq = λ1

λ1+λ2
∈ [0, 1], which is kept fixed in the limit). We had already shown

in section 3 that different choices ofq may even lead to different dimensions (four or six) of
the classical phase space. Qualitative differences in the classical dynamics become obvious
when a transformation to appropriate (i.e. canonical) variables is made (in the variablessij the
Hamilton function looks the same for any choice of irreducible representations in the classical
limit, but there are hidden constraints on these variables). The two systems investigated here
both have one constant of motion independent of the Hamiltonian itself. So we know from the
start that the four-dimensional classical limit is integrable. However, both examples will turn
out to display chaos in the six-dimensional limit.

In section 3 we showed that to each irreducible representation there is a unique
corresponding classical limit. This correspondence shows up in the level spacing distribution
P(s) of the quantum mechanical systems. In irreducible representations corresponding to a
chaotic classical limit,P(s) is a Wigner distribution, while classical integrability tends to go
with Poissonian level statistics, i.e. an exponentialP(s).

4.1. Two examples

Our example Hamiltonians are

H1 = h̄T3 + 3h̄2(S2
12 + S2

21) + 15h̄2(S13S32 + S23S31) (4.1)

H2 = sin(100h̄T3) + 1
2h̄

2(S2
12 + S2

21) + 100h̄2(S13S32 + S23S31). (4.2)

They both commute with the hyperchargeY

[Hi, Y ] = 0 for i = 1, 2 (4.3)

so hypercharge is conserved. All quantum mechanical investigations have been performed in
an eigenspace ofY .

The HamiltonianH1 resembles the Lipkin Hamiltonian (2.10). It is the simplest
Hamiltonian we have found which shows strongly different level spacing distributions in
different irreducible representations. Being only of second-order in the generators such a
Hamiltonian could, in principle, be realized with three-level atoms in a resonator coupled to
detuned modes.

The second HamiltonianH2 could hardly describe a real physical system because of the
sine function contained. We have chosen to present that Hamiltonian here since we have found
it to possess a beautiful transition from a Poissonian distribution of level spacingsP(s) (in
the irreducible representations corresponding to an integrable classical limit) to the Wigner
P(s) (in other irreducible representations with a nonintegrable limit). Actually, the Poissonian
statistics in the integrable case could not be expected since the restriction to an eigenspace of
the hypercharge leaves us with but a single degree of freedom in the integrable case. Poissonian
behaviour is really due to the sine function in the Hamiltonian: the function sin(kn) is somewhat
similar to a (bad) random-number generator, provided the parameterk is not a rational multiple
of π andk � π , asn runs through the integers.

In the classical limit we have set ¯h = 1
λ1+λ2

and have keptq = h̄λ1 fixed as described in
section 3. We then have 06 q 6 1 and the classical systems are described by the Hamilton
functions

Hcl
1 = t3 + 3(s2

12 + s2
21) + 15(s13s32 + s23s31) (4.4)

Hcl
2 = sin(100t3) + 1

2(s
2
12 + s2

21) + 100(s13s32 + s23s31) (4.5)
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which if written in terms of the variablest3, y, sij (i 6= j) seem independent of the irreducible
representations used in the classical limit (i.e. independent ofq). However, the two Casimir
functions,c2 = lim h̄→0 h̄

2C2 andc3 = lim h̄→0 h̄
3C3, are conserved so that these eight numbers

are not independent. Moreover, like its quantum counterpartY , the classical hyperchargey is a
constant of motion. The conservation ofy guarantees the integrability of the two Hamiltonians
above in the four-dimensional phase spaces.

Note that there is no free parameter other thanq in the Hamiltonians. Thus our
investigations rely on looking at one and the same Hamiltonian for different irreducibleSU3

representations.

4.2. Quantum chaos in different irreducible representations

For the numerical investigation of the level spacing statistics we have chosen an eigenspace of
the hypercharge with eigenvalueY = λ1−λ2

3 of the Hilbert space of the [λ1; λ2] representation.
The dimension of this subspace is

d = (λ1 + 1)(λ2 + 1). (4.6)

This eigenspace has been chosen because it has the largest dimension. For the first Hamiltonian
H1 only energy eigenvalues in the range−2.0 6 E 6 0.5 have been taken into account for
the level statistics. In that range quantum signatures of chaos seem to show up best. For the
second Hamiltonian we did not have to restrict ourselves to any energy range. The spectra
have been unfolded such that the mean level spacing equals unity.

Figures 1 and 2 show the level spacing distributionP(s) and, in the insets, its integral

N(s) =
∫ s

0
ds ′P(s ′). (4.7)

The thin curves showP(s) andN(s) of random matrix theory (Gaussian orthogonal ensemble
(GOE)) and for a uncorrelated spectrum (Poisson). The Wigner distribution of the GOE is
conjectured to be universal for classically chaotic systems. Uncorrelated spectra withP(s) a
Poisson distribution are known to be generic for classically integrable systems with more than
one degree of freedom.

The first graph of figure 1 showsP(s) andN(s) for the HamiltonianH1 in an irreducible
representation withq = 1 corresponding to a four-dimensional classical limit. Since this is
basically a one-freedom system, Poisson behaviour is not expected and indeedN(s) has three
sharp steps ats = 0, 1, 2 indicating a very rigid regular spectrum. In the following graphsq

is decreased. Forq = 0.99, 0.98, 0.95 the sharp steps inN(s) wash out and the distributions
look much similar to a Poisson distribution with a surviving strong peak forS = 0 in P(s).
Since 0< q < 1 in these cases we have a six-dimensional classical limit so we cannot knowa
priori whether the system is integrable or not. The distributions indicate that we are still near
integrability. However, the peak ats = 0 inP(s) becomes smaller forq = 0.9, and fors > 0
the distribution already looks more like a Wigner distribution. Finally, fors = 0.8 universal
level repulsion is fully developed, as can be seen in the graph ofN(s).

The results for the second system show the onset of level repulsion more beautifully in
figure 2. Forq = 1.0 we see here a Poisson distribution. As already mentioned, such absence
of correlations between the levels of a one-degree-of-freedom system is an artifact of the sine
function in the Hamiltonian. However, now the promised beauty of the transition to level
repulsion can be appreciated: forq = 0.99 andq = 0.98 we see a crossover from Poisson to
Wigner behaviour. Forq = 0.6,P(s) agrees very nicely with the Wigner distribution.
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Figure 1. Level-spacing distributionP(s) and its integralN(s) for the HamiltonianH1 in different
irreducible representations. The irreducible representations are labelled byλ1 andλ2 and by the
parameterq, the dimension of the diagonalized matrix isd, andk energy eigenvalues in the range
−2.06 E 6 0.5 have been taken into account for the statistics.
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Figure 2. Level-spacing distributionP(s) and its integralN(s) for the HamiltonianH2 in different
irreducible representations. The labels are as in figure 1.
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4.3. Chaos and integrability in the classical limit

The above results indicate that in the classical limits corresponding to the irreducible
representations used for the level statistics we should see a crossover from integrable to chaotic
dynamics. This crossover is accompanied by the appearance of a new degree of freedom. This
new degree of freedom is, however, very restricted forq near one (or near zero) such that chaos
is not yet fully developed there.

We start by writing down the Hamilton functionsHcl
1 andHcl

2 in canonical variables. The
difference of the classical limits for 06 q 6 1 then becomes obvious. In (4.4) and (4.5)
there is a hidden restriction: in the classical limit two Casimir functions have been fixed. In
canonical variables, i.e. in variables fulfilling canonical Poisson bracket relations

{Ii, φj } = δij for i, j = 1, 2, 3 (4.8)

the two Hamilton functions are

Hcl
1 (Ij , φj ) = I2 + 6(I 2

3 − I 2
2 ) cos(2φ2) + 30

√
A2
q − B2

q cos(φ2)60AqBq(I3 sin(φ2) sin(φ3)

−I2 cos(φ2) cos(φ3)) (4.9)

Hcl
2 (Ij , φj ) = sin(100I2) + (I 2

3 − I 2
2 ) cos(2φ2)

+200
√
A2
q − B2

q cosφ2400AqBq(I3 sin(φ2) sin(φ3)− I2 cos(φ2) cos(φ3)).

(4.10)

The coefficientsAq,Bq are given above in (3.34). Neither Hamiltonian depends onφ1

and hence the classical system has the constant of motionI1 = y, the classical analogue
of the quantum constantY . We may therefore work in a phase space spanned by
I2 = t3, I3 = t, φ2, φ3. With this (rather brutal form of a) symplectic reduction we are left with
a dynamics with two degrees of freedom andI1 = y is a parameter with range− q+1

3 6 y 6
2−q

3 .

We have chosenI1 = y = 2q−1
3 , which corresponds to the choice we made for the eigenvalue

of the hyperchargeY in the quantum case. The coefficientsAq andBq simplify to

Aq = 1

2I3

√(
q − 1

2
+ I3

)(
1

2
− I3

)(
1

2
+ I3

)
Bq = 1

2I3

√(
−q +

1

2
+ I3

)(
1

2
− I3

)(
1

2
+ I3

)
.

(4.11)

The compactness of the phase space is expressed by a limited range of the action variablesIj .
WhenI1 = y = 2q−1

3 , the range ofI3 = t is

q − 1
2 6 t 6

1
2 for 1

2 6 q 6 1
1
2 − q 6 t 6 1

2 for 06 q 6 1
2 (4.12)

and the range ofI2 = t3 (whenI3 = t is fixed)

−t 6 t3 6 t. (4.13)

For initial conditions for the action variables which are inside the allowed range one can show
that the trajectories always remain inside this range.

Now for q = 1 or q = 0 the allowed range forI3 = t shrinks to one point,I3 = t = 1
2.

In these cases we remain with a single degree of freedom and its canonical pair of variablesI2
andφ2. The coefficientsAq andBq both vanish and the Hamilton functions become

Hcl
1,q=0(I2, φ2) = Hcl

1,q=1(I2, φ2) = I2 + 6( 1
4 − I 2

2 ) cos(2φ2) (4.14)

Hcl
2,q=0(I2, φ2) = Hcl

2,q=1(I2, φ2) = sin(100I2) + ( 1
4 − I 2

2 ) cos(2φ2). (4.15)
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Figure 3. The upper-left corner panel shows the energy shellHcl
1 = 0 in the reduced two-

dimensional phase space forq = 0. The other panels show phase portraits in the Poincaré surface
of sectionφ3 = 0 in the energy shellHcl

1 = 0, for various values ofq.

Having only one degree of freedom these Hamiltonian systems are, of course, integrable.
However, if we vary the parameterq the range ofI3 = t changes from a single point to a
finite interval and the Hamiltonian system has two degrees of freedom. To demonstrate the
appearance of chaos we have chosen to show numerically obtained phase portraits in Poincaré
surfaces of section. Our systems have two degrees of freedom (ifq 6= 0, 1), so an energy shell
and a Poincaré surface of section generically have, respectively, dimension three and two. We
shall restrict all following discussions to the energy shellHi(Ij ·φk) = E = 0 which lies at the
centre of the energy range (the energy range is bounded from above and below). As a Poincaré
surface we chooseφ3 = 0 and project it onto the plane spanned byI2 andφ2 (no effort has
been made to distinguish in which direction a trajectory pierces the Poincaré surface). Figure 3
illustrates the crossover from a one-freedom system to a chaotic two-freedom system forHcl

1 .
The first panel, forq = 1, does not portray a Poincaré surface of section but shows the whole
energy shellE = 0 in (reduced) phase space. The following panels show phase portraits in
Poincaŕe surfaces of section as described above. For values ofq very near to 1, the phase
portraits are still confined to a narrow region around the energy shell forq = 1. It is only when
q is considerably reduced that the phase portrait occupies a larger region in the(I2, φ2) plane
and chaos occurs (very few periodic orbits can be seen). In figure 4 we have magnified regions
from two of the phase portraits. In the upper case, forq = 0.98, the phase portrait is still
confined to a narrow region and we see lots of stable tori. This fits well with the Poissonian
level-spacing distributions we find in irreducible representations with the same value ofq (see
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Figure 4. In these two panels we have magnified a region from two of the phase portraits from
figure 3.

figure 1). In the lower case, withq = 0.9, the phase portrait has broadened and no stable tori
remain visible. Again this fits the corresponding level-spacing distribution which is Wigner
for the same value ofq.

Figure 5 shows the energy shellHcl
2 = E = 0 for q = 1 and phase portraits in Poincaré

surfaces of section for various valuesq < 1 for Hcl
2 . Again, the energy shell forq = 1 is

one-dimensional and all trajectories with energyE = 0 are confined to it. Asq is reduced
we have the same qualitative behaviour as forHcl

1 . The phase portraits broaden indicating
that the three-dimensional volume of the energy shell grows. Again, chaos appears as soon as
sufficient broadening has emerged, once again in correspondence with the results for the level
statistics (see figure 2).

5. Conclusion

By considering two model systems withSU3 generators as dynamical variables we have shown
that statistical properties of quantum spectra depend not only on the form of the Hamiltonian
but also on the representation of theSU3 group relevant to the problem. One and the same
Hamiltonian can exhibit features characteristic of integrability (clustering of the energy levels)
as well as of chaotic systems (level repulsion). We showed that this can be attributed to
different integrability properties of the classical limit, which in the case ofSU3 can be
attained in many ways depending on the chosen sequences of irreducible representations.
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Figure 5. The upper-left corner panel shows the energy shellHcl
2 = 0 in the reduced two-

dimensional phase space forq = 0. The other panels show phase portraits in the Poincaré surface
of sectionφ3 = 0 in the energy shellHcl

2 = 0, for various values ofq.

In particular, the dimensionality of the classical phase space depends on the way the classical
limit is approached, and could be reduced from six (the generic case) to four (corresponding
to degenerate irreducible representations). If there is one constant of motion the classical
dynamics is integrable in the four-dimensional phase spaces (q = 0 andq = 1) but generically
non-integrable in the six-dimensional phase spaces (0< q < 1). Correspondingly, the spectra
of the quantum Hamiltonian with one constant of motion only shows level repulsion for the
irreducible representations [λ1; λ2], with bothλ1 6= 0 andλ2 6= 0.
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